Plant functional types do not predict biomass responses to removal and fertilization in Alaskan tussock tundra
نویسندگان
چکیده
Plant communities in natural ecosystems are changing and species are being lost due to anthropogenic impacts including global warming and increasing nitrogen (N) deposition. We removed dominant species, combinations of species and entire functional types from Alaskan tussock tundra, in the presence and absence of fertilization, to examine the effects of non-random species loss on plant interactions and ecosystem functioning.After 6 years, growth of remaining species had compensated for biomass loss due to removal in all treatments except the combined removal of moss, Betula nana and Ledum palustre (MBL), which removed the most biomass. Total vascular plant production returned to control levels in all removal treatments, including MBL. Inorganic soil nutrient availability, as indexed by resins, returned to control levels in all unfertilized removal treatments, except MBL.Although biomass compensation occurred, the species that provided most of the compensating biomass in any given treatment were not from the same functional type (growth form) as the removed species. This provides empirical evidence that functional types based on effect traits are not the same as functional types based on response to perturbation. Calculations based on redistributing N from the removed species to the remaining species suggested that dominant species from other functional types contributed most of the compensatory biomass.Fertilization did not increase total plant community biomass, because increases in graminoid and deciduous shrub biomass were offset by decreases in evergreen shrub, moss and lichen biomass. Fertilization greatly increased inorganic soil nutrient availability.In fertilized removal treatments, deciduous shrubs and graminoids grew more than expected based on their performance in the fertilized intact community, while evergreen shrubs, mosses and lichens all grew less than expected. Deciduous shrubs performed better than graminoids when B. nana was present, but not when it had been removed.Synthesis. Terrestrial ecosystem response to warmer temperatures and greater nutrient availability in the Arctic may result in vegetative stable-states dominated by either deciduous shrubs or graminoids. The current relative abundance of these dominant growth forms may serve as a predictor for future vegetation composition.
منابع مشابه
Production and export of dissolved C in arctic tundra mesocosms: the roles of vegetation and water flow
To better understand carbon (C) cycling in arctic tundra we measured dissolved C production and export rates in mesocosms of three tundra vegetation types: tussock, inter-tussock and wet sedge. Three flushing frequencies were used to simulate storm events and determine potential mass export of dissolved C under increased soil water flow scenarios. Dissolved C production and export rates differe...
متن کاملSoil bacterial community composition altered by increased nutrient availability in Arctic tundra soils
The pool of soil organic carbon (SOC) in the Arctic is disproportionally large compared to those in other biomes. This large quantity of SOC accumulated over millennia due to slow rates of decomposition relative to net primary productivity. Decomposition is constrained by low temperatures and nutrient concentrations, which limit soil microbial activity. We investigated how nutrients limit bacte...
متن کاملCumulative impacts on Alaskan arctic tundra of a quarter century of road dust1
Tundra ecosystems are sensitive to disturbance and slow to recover. To account for environmental costs of development in the North, cumulative impacts of roads and dust deposition must be quantified. After a previous study, we re-examined tundra adjacent to the 577-km-long Dalton Highway in northern Alaska to assess 13 y of additional calcareous road dust deposition. Dust loading continues to a...
متن کاملEffects of Nitrogen Fertilization on Plant Communities of Nonsorted Circles in Moist Nonacidic Tundra, Northern Alaska
Nitrogen availability is considered to be a key limiting factor for plant growth in arctic tundra. Freeze-thaw cycles, which can produce patterned-ground features, may also limit the establishment and growth of arctic plants. In this experiment, we fertilized nonsorted circles, a type of patterned-ground feature, and the surrounding more stable vegetation in moist nonacidic tundra of northern A...
متن کاملModeling dynamics of tundra plant communities on the Yamal Peninsula, Russia, in response to climate change and grazing pressure
Understanding the responses of the arctic tundra biome to a changing climate requires knowledge of the complex interactions among the climate, soils and biological system. This study investigates the individual and interaction effects of climate change and reindeer grazing across a variety of climate zones and soil texture types on tundra vegetation community dynamics using an arctic vegetation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Ecology
دوره 96 شماره
صفحات -
تاریخ انتشار 2008